Spectral Properties of the Cauchy Process on Half-line and Interval

نویسنده

  • TADEUSZ KULCZYCKI
چکیده

We study the spectral properties of the transition semigroup of the killed onedimensional Cauchy process on the half-line (0,∞) and the interval (−1, 1). This process is related to the square root of one-dimensional Laplacian A = − √ − d dx with a Dirichlet exterior condition (on a complement of a domain), and to a mixed Steklov problem in the half-plane. For the half-line, an explicit formula for generalized eigenfunctions ψλ of A is derived, and then used to construct spectral representation of A. Explicit formulas for the transition density of the killed Cauchy process in the half-line (or the heat kernel of A in (0,∞)), and for the distribution of the first exit time from the half-line follow. The formula for ψλ is also used to construct approximations to eigenfunctions of A in the interval. For the eigenvalues λn of A in the interval the asymptotic formula λn = nπ 2 − π8 + O( 1 n ) is derived, and all eigenvalues λn are proved to be simple. Finally, efficient numerical methods of estimation of eigenvalues λn are applied to obtain lower and upper numerical bounds for the first few eigenvalues up to 9th decimal point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).

متن کامل

Solvability of an impulsive boundary value problem on the half-line via critical point theory

In this paper, an impulsive boundary value problem on the half-line is considered and existence of solutions is proved using Minimization Principal and Mountain Pass Theorem.

متن کامل

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an innite dimensional Hilbert space and K(H) be the set of all compactoperators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate ofhigher derivation and higher Jordan derivation on K(H) associated with the following Cauchy-Jensentype functional equation 2f((T + S)/2+ R) = f(T ) + f(S) + 2f(R) for all T, S, R are in K(...

متن کامل

The Cauchy Process and the Steklov Problem

Let Xt be a Cauchy process in R, d ≥ 1. We investigate some of the fine spectral theoretic properties of the semigroup of this process killed upon leaving a domain D. We establish a connection between the semigroup of this process and a mixed boundary value problem for the Laplacian in one dimension higher, known as the “Mixed Steklov Problem.” Using this we derive a variational characterizatio...

متن کامل

Influence of a Crown Ether on the Spectral Properties of Triarylmethane Dyes in Aqueous and Micellar Environments

This study demonstrates the spectral data for two triarylmethane dyes, malachite green (MG) and crystal violet (CV) at room temperature. Effects of micellar environment, and crown ether addition on the spectral behaviour of the dyes were studied using absorption spectroscopic method. The dye-anionic surfactant interactions in micellar media were investigated. The chosen surfactants with differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009